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Abstract. The paper is devoted to the discussion on the orbits of Kaprekar’s trans-
formations generated and analyzed only on the basis of selected numerical results. We
succeeded in discovering many intriguing facts, for instance the fact that the num-
ber of elements of the orbits of the first fifty Kaprekar’s transformations “stabilizes”
quickly and is not greater than seven! Moreover, “almost” all the numerical orbits
obtained by us can be expanded in the infinite sequences of the orbits of the respec-
tive Kaprekar’s transformations with the subscripts increasing at arithmetic rate. We
have also discovered only one single “anomaly”, that is the orbit which we were able
to expand only in a finite “extinguishing” sequence of orbits of the seven successive
Kaprekar’s transformations.
From the numerical side we used two algorithms, one is based on the application of
the prime divisors of the investigated numbers and the other one is grounded on the
extraction of the maximal subset with respect to the inclusion relation, invariant with
regard to the discussed Kaprekar’s transformation.
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on Experimental Mathematics. Wydawnictwo Politechniki Śla̧skiej, Gliwice 2017, pp. 259–273.
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1. Introduction

The paper is already the fourth one in the cycle of papers written by the authors
and devoted to the Kaprekar’s transformations (see [7, 8, 6]). The topic of Kaprekar’s
transformations has inspired many authors which can be seen for instance by inves-
tigating the references included in our papers. It is not a secret that our actions, as
researchers, were mostly stimulated by some numerical aspects connected especially
with the number and the forms of orbits of the Kaprekar’s transformations.

Let us fix n ∈ N, n ≥ 2. Let α ∈ N be any n-digit number in its decimal expansion,
the digits of which are ordered in the following nondecreasing sequence

0 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ 9.

Let us also assume that at least two digits are different, that is the condition a1 6= an
is satisfied. We take

Tn(α) :=

n∑

k=1

(ak − an−k+1)10
k−1 = anan−1 . . . a1 − a1a2 . . . an. (1)

The map Tn is called the n-th Kaprekar’s transformation, we will also use the terms
“operator” Tn and “mapping” Tn.

Let us notice that in the decimal expansion of the number Tn(α) at least two digits
are then different, additionally Tn(α) < 10n, and finally, by completing, if necessary,
the number obtained according to formula (1) with the appropriate number of zeros,
we assume also that 10n−1−1 ≤ Tn(α). The reason for such an action is the following
fact

Tn(a1a2 . . . an) = Tn(aσ(1)aσ(2) . . . aσ(n))

for any permutation σ ∈ Sn, where, as usually, Sn denotes the set of all elements of
the symmetric group of order n.

For example, we have

T3(323) = 332− 233 = 99 = 099,

T4(0999) = T4(9099) = T4(9909) = T4(9990) = 8991.
(2)

Let us introduce the following notations

a(k×) := a
(
10k−1 + 10k−2 + . . .+ 1

)
= a . . . a

︸ ︷︷ ︸

k times

for any a ∈ {0, 1, 2, . . . , 9} and k ∈ N (if k ∈ Z, k ≤ 0, then we set a(k×) := ∅) and

N
cph

k :=
{
n ∈ N : 10k−1 − 1 ≤ n < 10k ∧ n 6= a(k×), where a ∈ {1, 2, . . . , 9}

}
,

for k = 2, 3, . . . , that is N
cph

k denotes the set composed of the number 10k−1 − 1 :=
09((k − 1)×) and these natural numbers, the decimal expansion of which contains k
digits and, simultaneously, at least two different digits.
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Remark 1.1. Identifying the notation 09(k×) with the (k + 1)-element sequence of

the respective numbers, similarly as the remaining numbers from the set N
cph

k+1 for
every k = 1, 2, 3, . . ., we can write that

N
cph

k ∩ N
cph

k+1 = ∅, k ∈ N.

By using the notations introduced above we can additionally formulate the follow-
ing theorem referring to example (2) (see [6]):

Theorem 1.2. If n ∈ N
cph

k
, then Tk(n) ≥ 9((k − 1)×) for every k = 2, 3, . . .

Corollary 1.3. We have
Tk : N

cph

k → N
cph

k

for every k = 2, 3, . . . Moreover

Tk (09(k×)) = 89((k − 1)×)1,

Tk (a(k×)(a− 1)) = 09(k×)

for every a = 2, 3, . . . , 9 and k = 2, 3, . . .

Remark 1.4. The reason for introducing the set Ncph

k in this paper was to eliminate
from the discussion the trivial fixed point (i.e. the zero number) of the transformations
Tk. Let us notice that in papers [7, 8] the trivial fixed point of the transformations Tk is
allowed. In this case we had a more general definition of the Kaprekar’s transformation

Tk : {0} ∪
{
α ∈ N : 10k−1 − 1 ≤ α < 10k

}
→ {0} ∪N

cph

k ,

where k ≥ 2. Certainly Tk(0) = 0. Let us also notice that we have then (by definition
(1), without the assumption that a1 6= an):

Tk

(
{0} ∪

{
α ∈ N : 10k−1 − 1 ≤ α < 10k

})
= {0} ∪ N

cph

k .

2. Orbits of Kaprekar’s transformations Tn for n ≤ 50

We begin with some general conclusions concerning the orbits of Kaprekar’s trans-
formations drawn just by observing the forms of orbits of the Kaprekar’s transforma-
tions obtained with the aid of computer calculations.

Thus, we have observed that the odd Kaprekar’s transformations (that is, by def-
inition, the mappings Tn with an odd subscript n) starting from T13 till T49 possess
only 1-, 2- , 3- and 5-element orbits. As a quite intriguing fact, let us notice that each
mapping T13+2n, n ∈ N0 possesses the following 2-element orbit

( 873((n+ 2)×)209876((n+ 2)×)22, 966543(n×)296((n+ 1)×)54331 ).
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Verification. We have: T2n+13(873(n+ 2×)209876(n+ 2×)22)=

= 988776(n+ 2× )3(n+ 2× )2220
− 02223(n+ 2× )6(n+ 2× )77889

966543( n× )296(n+ 1×)54331,

and T2n+13(966543(n×)296(n+ 1×)54331) =

= 99666(n+ 1×)5544333( n× )21
−12333( n× )4455666(n+ 1×)99

873( n+ 2× )209876(n+ 2× )22.

Remark 2.1. To the contrast the numbers 87320987622 and 96653954331 belong to
the orbit of length 8 of T11 and we have T11(87320987622) = 96653954331.

Moreover, except the following cases: T23, T25, T41 and T43 possessing two 2-element
orbits and the transformations T37 and T39 possessing three 2-element orbits, all the
others odd Kaprekar’s transformations have exactly one 2-element orbit.

Whereas the even Kaprekar’s transformations (that is the mappings Tn with an
even subscript n) starting from T2 possess only 1-, 2-, 3-, 5- and 7-element orbits. The
5-element orbits are possessed only by the following transformations: T20 – one such
orbit, T22 – three such orbits, T24 – five such orbits and T2n, n ∈ {13, . . . , 18} – six
such orbits, next T38 – seven such orbits, T40 – nine such orbits, T42 – eleven such
orbits and, at last, T2n, n ∈ {22, . . . , 25} — twelve such orbits.

Remark 2.2. We also have

T2(N
cph
2 ) = {A(9−A) : A = 0, 1, . . . , 8}

and this set is the only orbit of T2.

Additionally, the transformations T2n+1 possess many other interesting properties:
— the number of 3-element orbits increases with the increasing values of subscript

n (from n = 9 till n = 24) starting from one orbit, through 4, 10, 21, 39, 66, 105,
159, 231, 326, 449, 605, 801, 1044, 1341 orbits and finally till 1701 orbits, whereas the
number of fixed points increases also with the increasing values of subscript n (from
n = 8 till n = 24) starting from two points, through 3, 5, 7, 8, 12, 14, 17, 21, 25,
31, 36, 43, 50, 59, 67 fixed points and finally till 76 fixed points. To the contrast, the
numbers of 5-element orbits form the nondecreasing sequence: T11 – one such orbit,
T13 – three such orbits, T15 – five such orbits, T17–T27 – each one possesses six such
orbits, T29 – seven such orbits, T31 – nine such orbits, T33 – eleven such orbits, T35–T45

– each one possesses twelve such orbits, T47 – thirteen such orbits and, at last, T49 –
fifteen such orbits;

— for n = 4 and n = 7 we have two fixed points, whereas for n = 5 and n = 6 we
have one fixed point.

For the transformations T2n where n ∈ {4, 5, . . . , 25}, the following facts hold true:
— the sequence of the numbers of 3-element orbits is increasing starting from one

orbit, through 4, 10, 20, 36, 60, 94, 141, 204, 286, 392, 527, 696, 906, 1164, 1477, 1854,
2304, 2836, 3462, 4194 orbits and finally till 5044 orbits;

— the sequence of the numbers of fixed points is increasing starting from three
fixed points, through 4, 6, 7, 9, 12, 14, 17, 21, 25, 30, 36, 43, 49, 58, 66, 75, 86, 97,
110, 122 fixed points and finally till 137 fixed points;
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— the 2-element orbits exist only for n = 8, 15, 16, 17, 22, 24, 25, more precisely,
there are two 2-element orbits only for n = 15 and 24, whereas for n = 8, 16, 17, 25
we have only one such orbit. For n = 22 we have three 2-element orbits.

Basing on the observation of the forms of these orbits, the following theorems have
been deduced. But for clarity let us formulate first the following important editorial
remark.

Remark 2.3. From the following theorem on, and henceforward as well, with regard
to the length of notation of the respective decimal expansions of the given numbers,
we break this notation if it is needed (that is if we have too many digits in this
expansion we may transfer them into a new line). For example, instead of notation
12345 in some decimal expansion we may write

12...
...345

Theorem 2.4. Each transformation T16n, n = 1, 2, . . ., has the following 2-element
orbit
(

8(n×)7(n×)6(n×)4((2n)×)2((2n− 1)×)1 . . .

. . . 9((2n)×)7((2n)×)5((2n)×)3(n×)2(n×)1((n− 1)×)2,

8(n×)7(n×)6(n×)5(n×)4(n×)3(n×)2((n− 1)×)1 . . .

. . . 9((2n)×)7(n×)6(n×)5(n×)4(n×)3(n×)2(n×)1((n− 1)×)2
)

.

Moreover, the transformations T14n+9, n = 1, 2, . . . , have the following 2-element
orbit
(

87((2n)×)65((n+ 1)×)4(n×)3((n+ 1)×)2((n− 1)×)1 . . .

. . . 9((2n+ 1)×)7(n×)6((n+ 1)×)5(n×)4((n+ 1)×)32((2n+ 1)×),

87((2n)×)65((n− 1)×)4((n+ 2)×)3((n− 1)×)2((n+ 1)×)1 . . .

. . . 9((2n+ 1)×)7((n+ 2)×)6((n− 1)×)5((n+ 2)×)4((n− 1)×)32((2n+ 1)×
)

,

and the transformations T14n+11, for every n = 1, 2, . . ., possess a 2-element orbit of
the form
(

887((2n− 1)×)6654((2n)×)32((2n− 1)×)1 . . .

. . . 9((2n+ 1)×)7((2n)×)65((2n)×)4332((2n− 1)×)12,

887((2n− 1)×)665((2n− 2)×)4443((2n− 2)×)221 . . .

. . . 9((2n+ 1)×)7776((2n− 2)×)5554((2n− 2)×)3332((2n− 1)×)12
)

.
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Proof. For T14n+9 we have

T14n+9(87((2n)×)65((n+ 1)×)...32((2n+ 1)×)) =
= 9 9 . . .9

︸ ︷︷ ︸

2n

8 7 . . . 7
︸ ︷︷ ︸

3n

6 . . . 6
︸ ︷︷ ︸

n+2

5 . . . 5
︸ ︷︷ ︸

2n+1

4 . . . 4
︸ ︷︷ ︸

2n+1

3 . . . 3
︸ ︷︷ ︸

n+2

2 . . . 2
︸ ︷︷ ︸

3n

1

– 1 2 . . . 2
︸ ︷︷ ︸

3n

3 . . . 3
︸ ︷︷ ︸

n+2

4 . . . 4
︸ ︷︷ ︸

2n+1

5 . . . 5
︸ ︷︷ ︸

2n+1

6 . . . 6
︸ ︷︷ ︸

n+2

7 . . . 7
︸ ︷︷ ︸

3n

8 9 . . . 9
︸ ︷︷ ︸

2n+1

8 7 . . .7
︸ ︷︷ ︸

2n

6 5 . . .5
︸ ︷︷ ︸

n−1

4 . . . 4
︸ ︷︷ ︸

n+2

3 . . . 3
︸ ︷︷ ︸

n−1

2 . . . 2
︸ ︷︷ ︸

n+1

1 9 . . .9
︸ ︷︷ ︸

2n+1

7 . . . 7
︸ ︷︷ ︸

n+2

6 . . . 6
︸ ︷︷ ︸

n−1

5 . . . 5
︸ ︷︷ ︸

n+2

4 . . . 4
︸ ︷︷ ︸

n−1

3 2 . . .2
︸ ︷︷ ︸

2n+1

and

T14n+9(87((2n)×)65((n− 1)×)...4((n− 1)×)32((2n+ 1)×)) =
= 9 9 . . . 9

︸ ︷︷ ︸

2n

8 7 . . . 7
︸ ︷︷ ︸

3n+2

6 . . . 6
︸ ︷︷ ︸

n

5 . . . 5
︸ ︷︷ ︸

2n+1

4 . . . 4
︸ ︷︷ ︸

2n+1

3 . . . 3
︸ ︷︷ ︸

n

2 . . . 2
︸ ︷︷ ︸

3n+2

1

– 1 2 . . . 2
︸ ︷︷ ︸

3n+2

3 . . . 3
︸ ︷︷ ︸

n

4 . . . 4
︸ ︷︷ ︸

2n+1

5 . . . 5
︸ ︷︷ ︸

2n+1

6 . . . 6
︸ ︷︷ ︸

n

7 . . . 7
︸ ︷︷ ︸

3n+2

8 9 . . .9
︸ ︷︷ ︸

2n+1

8 7 . . .7
︸ ︷︷ ︸

2n

6 5 . . .5
︸ ︷︷ ︸

n+1

4 . . . 4
︸ ︷︷ ︸

n

3 . . . 3
︸ ︷︷ ︸

n+1

2 . . . 2
︸ ︷︷ ︸

n−1

1 9 . . .9
︸ ︷︷ ︸

2n+1

7 . . . 7
︸ ︷︷ ︸

n

6 . . . 6
︸ ︷︷ ︸

n+1

5 . . . 5
︸ ︷︷ ︸

n

4 . . . 4
︸ ︷︷ ︸

n+1

3 2 . . .2
︸ ︷︷ ︸

n+1

For T14n+11 we have

T14n+11(887((2n− 1)×)6654((2n)×)...12) =
= 9 9 . . . 9

︸ ︷︷ ︸

2n+1

88 7 . . . 7
︸ ︷︷ ︸

4n−1

666 5 . . .5
︸ ︷︷ ︸

2n+1

4 . . . 4
︸ ︷︷ ︸

2n+1

333 2 . . . 2
︸ ︷︷ ︸

4n−1

11

– 11 2 . . . 2
︸ ︷︷ ︸

4n−1

333 4 . . .4
︸ ︷︷ ︸

2n+1

5 . . . 5
︸ ︷︷ ︸

2n+1

666 7 . . . 7
︸ ︷︷ ︸

4n−1

88 9 . . . 9
︸ ︷︷ ︸

2n+1

88 7 . . .7
︸ ︷︷ ︸

2n−1

66 5 . . .5
︸ ︷︷ ︸

2n−2

444 3 . . .3
︸ ︷︷ ︸

2n−2

221 9 . . .9
︸ ︷︷ ︸

2n+1

777 6 . . .6
︸ ︷︷ ︸

2n−2

555 4 . . .4
︸ ︷︷ ︸

2n−2

33 2 . . .2
︸ ︷︷ ︸

2n−1

12

and

T14n+11(887((2n− 1)×)665((2n− 2)×)...12) =
9 9 . . . 9
︸ ︷︷ ︸

2n+1

88 7 . . . 7
︸ ︷︷ ︸

2n+2

6 . . . 6
︸ ︷︷ ︸

2n

5 . . . 5
︸ ︷︷ ︸

2n+1

4 . . . 4
︸ ︷︷ ︸

2n+1

3 . . . 3
︸ ︷︷ ︸

2n

2 . . . 2
︸ ︷︷ ︸

2n+2

11

– 11 2 . . . 2
︸ ︷︷ ︸

2n+2

3 . . . 3
︸ ︷︷ ︸

2n

4 . . . 4
︸ ︷︷ ︸

2n+1

5 . . . 5
︸ ︷︷ ︸

2n+1

6 . . . 6
︸ ︷︷ ︸

2n

7 . . . 7
︸ ︷︷ ︸

2n+2

88 9 . . .9
︸ ︷︷ ︸

2n+1

88 7 . . .7
︸ ︷︷ ︸

2n−1

665 4 . . .4
︸ ︷︷ ︸

2n

3 2 . . .2
︸ ︷︷ ︸

2n−1

1 9 . . .9
︸ ︷︷ ︸

2n

7 . . . 7
︸ ︷︷ ︸

2n

6 5 . . .5
︸ ︷︷ ︸

2n

433 2 . . .2
︸ ︷︷ ︸

2n−1

12

⊓⊔

Theorem 2.5. Each transformation T14n+2, n = 1, 2, . . . possesses the following two
2-element orbits

(

87((2n− 1)×)64((2n)×)2((2n− 1)×)19((2n)×)7((2n)×)5((2n)×)32((2n)×),

87((2n−1)×)65((2n−1)×)43((2n−1)×)19((2n)×)76((2n−1)×)54((2n−1)×)32((2n)×)
)

;
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(

87((2n− 1)×)654((2n− 1)×)32((2n− 2)×)19((2n)×)7((2n− 1)×)65((2n−

1)×)432((2n)×),

87((2n− 1)×)65((2n− 2)×)443((2n− 2)×)219((2n)×)776((2n− 2)×)554((2n−

2)×)32((2n)×)
)

.

Proof. A simple verification – a similar to that in the proof of Theorem 2.4 – is
omitted here. ⊓⊔

Theorem 2.6. Each transformation T18n−2, n = 1, 2, . . ., has the following 2-element
orbit

(

8((2n− 1)×)76((2n− 1)×)54((2n− 1)×)32((2n− 2)×)1 . . .

. . . 9((2n)×)9((2n− 1)×)65((2n− 1)×)43((2n− 1)×)21((2n− 2)×)2,

8((2n− 1)×)76((2n− 1)×)4((2n)×)2((2n− 1)×)1 . . .

. . . 9((2n)×)7((2n)×)5((2n)×)3((2n− 1)×)21((2n− 2)×)2
)

.

For n = 1 and n = 2 these are the single 2-element orbits of operator T18n−2.

Proof. A simple verification – a similar to that in the proof of Theorem 2.4 – is
omitted here. ⊓⊔

Remark 2.7. Let us notice that apart from the 2-element orbits described only by
means of “formulae” from the three theorems presented above each transformation
T44 and T48 possesses additionally one more 2-element orbit.

2.1. Singularity

Every odd Kaprekar’s transformation T37−T43 possesses the 2-element orbit. These
orbits form together a short regular sequence (that is these orbits can be described
by one “analytical” formula, like the formula given below) which finishes with a fixed
point in case of T45 and which vanishes in case of T35. More precisely, the transfor-
mations T35+2k have the orbit
(

8(k×)7((5− k)×)6(k×)4(5×)2(4×)1...

...9(5×)7(5×)5(5×)3(k×)2((5− k)×)1((k − 1)×)2,

8(k×)7((5− k)×)6(k×)5((5− k)×)4(k×)3((5− k)×)2((k − 1)×)1...

...9(5×)7(k×)6((5− k)×)5(k×)4((5− k)×)3(k×)2((5− k)×)1((k − 1)×)2
)

for each k = 1, . . . , 5.
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For k = 5 we get the following fixed point of T45:

8(5×)6(5×)4(5×)2(4×)19(5×)7(5×)5(5×)3(5×)1(4×)2.

It is the only one unusual feature of the Kaprekar’s transformations noticed by us
till now (on the basis of numerically determined results). Mostly the orbits, noticed
by us, “developed” into the infinite sequence of orbits, instead of being “cut” after
a finite number of steps.

2.2. One more singularity

We have also observed that each Kaprekar’s transformation T2n for n ≥ 3 possesses
the following 7-element orbit

(

43(k×)20876(k×)6, 853(k×)176(k×)42,

753(k×)086(k×)43, 843(k×)086(k×)52,

863(k×)086(k×)32, 863(k×)266(k×)32,

643(k×)266(k×)54
)

,

where k := n− 3.
For n ∈ {3, 4, . . . , 25} this is the single 7-element orbit of the transformation T2n.
However we are not sure whether the singularity of 7-element orbit is

a common property of all the transformations T2n, n ∈ N.

2.3. 5-element orbits of Kaprekar’s transformations

We begin with the description of 5-element orbits of the even Kaprekar’s transfor-
mations.

The operators T20+2n, n = 0, 1, 2, . . ., have the following 5-element orbit

(

98666443(n×)2199776(n×)5533311,

8886443((n+ 1)×)2199776((n+ 1)×)553112,

88766443(n×)2199776(n×)5533212, 88665443(n×)2199776(n×)5543312,

8866443(n×)220998776(n×)553312
)

.
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The operators T22+2n, n = 0, 1, 2, . . ., possess additionally the following 5-element
orbits

(

987666443(n×)2199776(n×)55333211,

88865443((n+ 1)×)2199775((n+ 1)×)5543112,

88766443(n×)220998776(n×)5533212,

986665443(n×)2199776(n×)55433311,

8886443((n+ 1)×)220998776((n+ 1)×)553112
)

and
(

98666443(n×)220998776(n×)5533311,

98866443((n+ 1)×)2199776((n+ 1)×)5533111,

88876443((n+ 1)×)2199776((n+ 1)×)5532112,

887665443(n×)2199776(n×)55433212,

88665443(n×)220998776(n×)5543312
)

.

The operators T24+2n, n = 0, 1, 2, . . ., possess also some other 2-element orbits, the
description of which will be omitted here with regard to the reasonable length of the
current paper.

Finally, the operators T26+2n, n = 0, 1, 2, . . ., have one more, the sixth one, 5-
element orbit

(

9887665443((n+ 1)×)2199776((n+ 1)×)554332111,

888765443((n+ 1)×)220998776((n+ 1)×)554332111,

9876665443(n×)220998776(n×)554333211,

988665443((n+ 1)×)220998776((n+ 1)×)55433111,

988766443((n+ 1)×)220998776((n+ 1)×)55332111
)

.

Let us notice that the operators T2n, 13 ≤ n ≤ 18, possess only six presented above
5-element orbits.

Only operator T38 has seven 5-element orbits, more precisely, the operator T38+2n,
for n = 0, 1, 2, . . ., apart from the six described above 5-element orbits, possesses one
more, the seventh one, 5-element orbit

(

88886666544443(n×)2221999977776(n×)5555433331112,

8888666644443(n×)222209999877776(n×)555533331112,

98886666644443(n×)2221999977776(n×)5555333331111,

8888866644443((n+ 1)×)2221999977776((n+ 1)×)555533311112,

88887666644443(n×)2221999977776(n×)5555333321112
)

.
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Next, starting from T40 there appear two more 5-element orbits, more precisely, the
operator T40+2n, for n = 0, 1, 2, . . ., possesses the following two additional 5-element
orbits

(

98888666644443((n+ 1)×)2221999977776((n+ 1)×)5555333311111,

88888766644443((n+ 1)×)32221999977776((n+ 1)×)5555333211112,

888876666544443(n×)2221999977776(n×)55554333321112,

88886666544443(n×)222209999877776(n×)5555433331112,

98886666644443(n×)222209999877776(n×)5555333331111
)

and (

988866666544443(n×)2221999977776(n×)55554333331111,

8888866644443((n+ 1)×)222209999877776((n+ 1)×)555533311112,

988876666644443(n×)2221999977776(n×)55553333321111,

88888666544443((n+ 1)×)2221999977776((n+ 1)×)5555433311112,

88887666644443(n×)222209999877776(n×)5555333321112
)

.

Furthermore, the operator T42+2n, n = 0, 1, 2, . . ., possesses the next two 5-element
orbits, whereas T44+2n, n = 0, 1, 2, . . ., has one more such 5-element orbit. Precise
description of these additional orbits will be also omitted here. The transformation
T46+2n, for n ≤ 2, does not have any other new 5-element orbits.

Let us also give some examples of other 5-element orbits for the odd Kaprekar’s
transformations:

— the transformation T29+2n has the orbit

(

98866664443(n×)2219997776(n×)5553333111,

8888664443((n+ 1)×)2219997776((n+ 1)×)555331112,

88876664443(n×)2219997776(n×)5553332112,

88866654443(n×)2219997776(n×)5554333112,

8886664443(n×)222099987776(n×)555333112
)

for every n = 0, 1, 2, . . .;
— the transformation T11+2n has the orbit

(

96643(n×)1976(n×)5331, 8843((n+ 1)×)1976((n+ 1)×)512,

87643(n×)1976(n×)5322, 86543(n×)1976(n×)5432,

8643(n×)209876(n×)532
)

for every n = 0, 1, 2, . . .;
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— whereas the transformation T13+2n has the orbit

(

966543(n×)1976(n×)54331, 8843((n+ 1)×)209876((n+ 1)×)512,

976643(n×)1976(n×)53321, 88643((n+ 1)×)1976((n+ 1)×)5412,

87643(n×)209876(n×)5322
)

for every n = 0, 1, 2, . . .

3. Singularities of the transformations T2n+1, n = 1, 2, . . . , 5

Singularities of these transformations will be referred to the numbers of the pos-
sessed orbits and all the presented facts will be compared with the number and forms
of the possessed orbits of the first fifty transformations Tn. Thus

— transformation T5 has one 2-element orbit and two 4-element orbits; no other
odd Kaprekar’s transformation possesses the 4-element orbit;

— transformation T7 has one 8-element orbit;
— transformation T9 has two fixed points and one 14-element orbit; no other odd

Kaprekar’s transformation possesses the 14-element orbit;
— transformation T11 has one 1-element, one 5-element and one 8-element orbits;

only T7 and T11 possess the 8-element orbits!
In our opinion, the above singularities result from the too small number of digits

in the decimal expansion of n in the transformation Tn with respect to the way of
acting of this transformation (see formula (1)). We also think that these singularities
may appear for infinitely many Kaprekar’s transformations Tn. And this is, from now
on, our basic conjecture!

The above singularities lead immediately to the connotation with some other, more
well-known, singularities existing in the number theory, for instance with the divisi-
bility rules (see [17], [14, pp. 17–21], [3, chap. 7]). At least few of these facts we would
like to share with our readers. Using the opportunity let us present some original rules
of divisibility by 7 and 17 (the latter ones seem to be completely original)!

Rules of divisibility by 7:
let us set a number k ∈ N and its decimal expansion anan−1 . . . a2a1a0.
— typical rule: 7|k if and only if the number

(a2a1a0)− (a5a4a3) + (a8a7a6)− . . .

is divisible by 7;
— untypical rule: 7|k if and only if the number

(an . . . a2a1) + 5a0

is divisible by 7;
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— another untypical rule: 7|k if and only if the number

(a0 + 3a1 + 2a2)− (a3 + 3a4 + 2a5) + (a6 + 3a7 + 2a8)− . . .

is divisible by 7.
The above rule works also in the ternary numerical system, whereas in the quinary

numerical system we have 7|k if and only if the number

(a0 − 2a1 − 3a2)− (a3 − 2a4 − 3a5) + (a6 − 2a7 − 3a8)− . . .

is divisible by 7.
The untypical rules of divisibility by 7 are better if, for example, there is a need of

verifying whether the number 1234567 is not divisible by 7.
Rule of divisibility by 17: 17|k if and only if the number

(a1a0 − 2a3a2 + 4a5a4 − 8a7a6) + (a9a8 − . . .

is divisible by 17.
Taking into account the 3-element segments, or even the 4-element segments, does

not generate so effective rules of divisibility by 17 (however one can argue in case of
the 4-element segments), for example 17|k if and only if the number (we have here
the alternating sequence of signs between the successive brackets):

(a2a1a0 − 3a5a4a3 − 8a8a7a6 + 7a11q10a9 − 4a14a13a12+

− 5a17a16a15 − 2a20a19a18 + 6a23a22a21)+

− (a26a25a24 − 3a29a28a27 − and so on ) + . . .

is divisible by 17 or, respectively, the number

(a3a2a1a0 + 4a7a6a5a4) + (a11a10a9a8 + 4a15a14a13a12) + . . .

is divisible by 17.

4. Descriptions of numerical algorithms

Computations needed for this paper – connected above all with determination
of the orbits of Kaprekar’s transformation – have been executed by applying two
essentially differing algorithms which we intend to describe in this section. The first
algorithm for determination of the orbits is based on the observation that, in case of
the Kaprekar’s transformation, the order of digits in the decimal expansion of a given
number is not important since, let us recall, Tn(aσ(1)aσ(2), . . . , aσ(n)) = Tn(a1a2 . . . an)
for each permutation σ ∈ Sn and each natural number possessing the n-digit decimal
expansion a1a2 . . . an. By this, for the n-digit numbers it is enough to determine all the
n-element multisets, the elements of which are the digits. It reduces significantly the
calculations because one n-element multiset represents n!

k0!k1!...k9!
of n-digit numbers,
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where ki denotes the number of occurrences of digit i, for i = 0, 1, ..., 9, in the decimal
description of the given n-digit number.

We should mention in this moment how to generate all the n-element multisets.
The procedure is as follows:

• As the first group of multisets we obtain nine 1-element sets

{1}, {2}, . . . , {9}.

• To create all the possible 2-element multisets we add to each 1-element set an
element greater than or equal to the one contained already in this set. For example,
for {1} we get {1, 1}, {1, 2}, {1, 3}, {1, 4}, . . .{1, 9}.

• We repeat this scheme as long as we obtain a multiset with a proper number of
elements. In general, the extension of each multiset can be described in the following
way

{c1, . . . , ck}
︸ ︷︷ ︸

given multiset

−→ {c1, . . . , ck, ck}, {c1, . . . , ck, ck + 1}, . . . , {c1, . . . , ck, 9}

where 1 ≤ c1 ≤ c2 ≤ . . . ≤ ck ≤ 9.
• The extensions of {0} are considered separately. In this case we take only at least

the 2-element multisets containing at least one non-zero element.

We assume that each multiset is represented as the 10-element table in which the
i-th element is equal to the number of occurrences of the digit i in the given multiset.

By counting the amount of numbers represented by the given multiset we should
to calculate the value of n!

k0!...k9!
. In the numerator of this formula a large number

appears which exceeds over the range of integer types. Therefore we use the fact that
each natural number, greater than one, can be presented as the product of prime
numbers. Thus, we represent the discussed here numbers as the vectors of exponents
of the successive prime numbers. For the assumed restriction n ≤ 50 we use only
the first 15 prime numbers, that is 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47. Each discussed number is uniquely presented in the form of a 15-element table
containing the exponents of the listed prime numbers. Hence, for multiplying two
consecutive numbers we need only to add the respective exponents in the respective
cells of the table. Whereas the division is performed by subtracting the exponents
in the respective cells of the table. Only after executing all the multiplications and
divisions, connected with computing the amount of numbers associated with the given
multiset, we raise the prime numbers to the powers contained in the respective cells
of the table and next the obtained results are mutually multiplied by receiving the
final result.

The second applied algorithm is based on the preliminary selection of the n-digit
numbers, the same as in the first algorithm, and next we operate on the obtained
numbers by using the operator Tn k times (the value of k is arbitrary, depending on us,
we usually took k = 5). From the obtained numbers we create a one-to-one sequence,
on which we operate again by using the operator Tn, one time in this case, and next
we create a one-to-one sequence from the Tn-images. We repeat this procedure as long
as the number of elements in the Tn-image does change. Such created sequence forms
the maximal invariant subset of the mapping Tn which is divided into the selective
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orbits. The corrected version of this algorithm separates before the fixed points of Tn,
so the obtained maximal invariant subset is reduced by the set of all fixed points of
Tn.

Let us explain the theoretical ground of the presented procedure.
Let X be a finite set and F : X → X . We say that the set Z ⊆ X the maximal

invariant subset of the mapping F if F (Z) = Z and for each U ⊆ X if Z ⊆ U and
F (U) = U then U = Z. Then the given below fundamental theorem holds.

Theorem 4.1. The following conditions are equivalent:
1) Xinv ⊆ X is the maximal invariant subset of the mapping F ,
2) if n ∈ N and Fn+1(X) = Fn(X), then Fn(X) = Xinv,
3) if F (Y ) = Y and

cardY := lim
k→∞

1

k

k∑

l=1

cardFl(X), (3)

then Y = Xinv.

Remark 4.2. As a curiosity connected with formula (3) let us present one more
formula, simply surprising for us,

lim
n→∞

(

lim
k→∞

1

k
card

(
Xn ∪ σ(Xn) ∪ σ2(Xn) ∪ . . . ∪ σk(Xn)

)
)

where Xn := {1, 2, . . . , n} for every n ∈ N, which determines the number of infinite
orbits of the given permutation σ : N → N! Proof of this formula can be provided by
applying the decomposition of the permutation σ into cycles (T. Hudetz used it in
his work [9] by suggesting that it was discovered by K. Thomsen [15]).
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